
Gradient Extrapolation for Debiased Representation Learning

Supplementary Material

A. The Extrapolated Conditional Attribute
Distribution of GERNE:

L in Eq. (6) can be written as:

L =


ℓ(y, f(x))p(y) p(a|y) p(x|a, y) dx dy da.

Therefore, Lb,Llb can be written as:

Lb =


ℓ(y, f(x))p(y) pb(a|y) p(x|a, y) dx dy da, (14)

Llb =


ℓ(y, f(x))p(y) plb(a|y) p(x|a, y) dx dy da. (15)

Where pb(a|y), plb(a|y) defined in Eq. (2), Eq. (4), respec-
tively, and x is uniformly sampled within each group Xy,a

(i.e., p(x|y, a) = 1
|Xy,a|). Substituting Eq. (14), Eq. (15) in

Eq. (5):

Lext =


ℓ(y, f(x)) p(y)


plb(a|y)

+ β · (plb(a|y)− pb(a|y))

· p(x|a, y) dx dy da

=


ℓ(y, f(x)) p(y)


αya + c · (β + 1) · (1

A
− αya)


·

p(x|a, y) dx dy da

=


ℓ(y, f(x)) p(y) pext(a|y) · p(x|a, y) dx dy da.

Then:

pext(a|y) = αya + c · (β + 1) · (1
A

− αya).

Furthermore, we can write Lext as follows:

Lext = Ey∼p(y)


Ea∼pext(a|y)


Ex∼p(x|a,y) [ℓ(y, f(x))]



=
1

K
·



g=(y,a)∈G
pext(a|y;β) · Lg,

with Lg = Ex∼p(x|(y,a)=g) [ℓ(y, f(x))] by using the dis-
crete expectations over y and a|y, with p(y) = 1

K .

B. GERNE Versus an Equivalent Sampling
and Weighting Approach

We compare GERNE with an equivalent (in terms of loss
expectation) sampling+weighting method, which we refer
to as “SW”. For simplicity, we assume the following:

1. A binary classification task where the number of classes
equals the number of attributes (i.e., K = A = 2).

2. The attributes are known, and the classes are balanced
(i.e., |Xy=1| = |Xy=2|).

3. The majority of samples that hold the spurious correla-
tion in each class are aligned with the class label (i.e.,
|Xy,a=y| > |Xy,a ̸=y|), and the dataset is highly biased
(i.e., |Xy,a ̸=y|

|Xy,a=y| ≪ 1).
4. In a highly biased dataset, best performance is coupled

with overrepresenting the minority groups (as illustrated
in Fig. 2) in early stages of training. Therefore, an
overfitting on the minority groups is expected before the
overfitting on the majority groups.

We refer to the expected loss of the majority samples as LA,
and the expected loss of the minority as LC . For GERNE,
we sample two batches: biased and less biased batch, each
of size B. From Eq. (5), Lext can be written as:

Lext = (1 + β) · Llb − β · Lb. (16)

Since the biased batch reflects the inherent bias present in
the dataset, under the third assumption, we can approximate
Lb by LA, neglecting the loss on the very few samples of
the minority group in the batch. Therefore, we have:

Lb ≈ LA. (17)

Following the third assumption and the conditional attribute
distribution in Eq. (4), we can approximate the composition
of the less biased batch as follows: a proportion of (1 − c

2)
of the samples in the less biased batch are drawn from the
aligned samples (majority group), while a proportion of c

2
of the samples from the minority group. This leads to the
following approximation:

Llb ≈ (1− c

2
) · LA +

c

2
· LC . (18)

Substituting Eq. (17), Eq. (18) into Eq. (16):

Lext ≈
2− c · (1 + β)

2
· LA +

c · (1 + β)

2
· LC . (19)

We consider the following “SW” approach:
• Sampling step: we sample an “SW” batch of sizeB, anal-
ogous to the less biased batch in GERNE, where (1− c

2)
of the samples are from the majority group (aligned sam-
ples) and c

2 from minority group.
• Weighting step: we compute the loss Lsw over the sam-
pled batch as follows:

Lsw = w ·LA+(1−w)·LC , w =
2− c · (1 + β)

2
, (20)

12

where LA is computed over the samples of the majority
group in the “SW” batch and LC is computed over the
samples of the minority group.

Both Lext and Lsw in Eq. (19), Eq. (20) are equivalent in
expectation. Let’s compute the variance of the two losses:

V ar(Lsw) = w2 · V ar(L1−c/2
A) + (1− w)2 · V ar(Lc/2

C)

+ 2 · w · (1− w) · Cov(L1−c/2
A ,Lc/2

C),
(21)

where V ar(Lm) means the variance computed over m · B
samples where B is the batch size. For simplicity, we
refer to V ar(L1) as V ar(L). Following the fourth as-
sumption, when the model overfits on the samples of the
minority group (i.e., LC ≈ 0), we can neglect both
V ar(LC), Cov(LA,LC) terms. Therefore:

V ar(Lsw) ≈ w2 · V ar(L1−c/2
A) =

w2

1− c
2

· V ar(LA) =

(
2− c · (1 + β)

2
)2 · 2

2− c
· V ar(LA). (22)

From Eq. (16):

V ar(Lext) = (1 + β)2 · V ar(Llb) + β2 · V ar(Lb)

− 2 · (1 + β) · β · Cov(Llb,Lb)

≥ ((1 + β) ·


V ar(Llb)− β ·


V ar(Lb))
2.

(23)

Note that the inequality reduces to an equality in Eq. (23) if
Cov(Llb,Lb) =


V ar(Llb) ·


V ar(Lb).

The covariance termCov(., .) can be controlled by the num-
ber of shared samples between the biased and less biased
batches. If all the aligned samples in the less biased batch
are included in the biased batch (i.e., the less biased batch
is created by replacing some samples of the majority group
with samples from the minority group), we then maximize
Cov(., .). From Eq. (18), we can write:

V ar(Llb) ≈ (1− c

2
)2 · V ar(L1−c/2

A) = (1− c

2
) · V ar(LA),

(24)

and from Eq. (17):

V ar(Lb) ≈ V ar(LA). (25)

Finally, substituting Eq. (24) and Eq. (25) in Eq. (23):

V ar(Lext) ≥ ((1 + β) ·


1− c

2
− β)2 · V ar(LA). (26)

According to the fourth assumption, we are interested in
the range where c · (β + 1) ≥ 1. Using the limits of β

defined in Eq. (9), we obtain β ∈

1−c
c , 2−c

c


. As β →

2−c
c , the representation of the aligned samples is vanishing

(according to Eq. (8)) in the sampled batches, which leads
to LA > 0. Assuming a limited and non-vanishing variance
V ar(LA) (i.e., the model outputs non-constant predictions
for samples from the majority group), we have:

β → 2−c
c =⇒ V ar(Lsw) ≈ 0, while V ar(Lext) ̸= 0

for c ∈ (0, 1]. This non-vanishing variance of GERNE’s
loss, if controlled with tuning β to ensure stability, gives
the model the chance of escaping sharp minima similar to
gradient random perturbation [1] and therefore, improves
generalization [23, 33, 34].

C. Simplifying the Bounds of β
We aim to simplify the upper and lower bounds of β in
Eq. (9). We start by simplifying the upper bound:

min
(y,a)∈G
αya ̸= 1

A

max(i1ya, i
2
ya),

where i1ya = − αya

c·(1
A−αya)

− 1, i2ya =
1−αya

c·(1
A−αya)

− 1, and
under the following constraints: ∀y ∈ Y ,


a αya = 1,

αya ∈]0, 1[\{ 1
A}, A ≥ 2, and c ∈ (0, 1].

We note that i1ya is a decreasing, and i2yaincreasing func-
tion in αya. We can show that if αya < 1

A , then i2ya > i1ya,
and if αya > 1

A , then i1ya > i2ya. We conclude with the
following:

min
(y,a)∈G
αya<

1
A

max(i1ya, i
2
ya) = i2y′a′ , min

(y,a)∈G
αya>

1
A

max(i1ya, i
2
ya) = i1y′′a′′ ,

where:

αy′a′ = min
(y,a)∈G

αya <
1

A
,αy′′a′′ = max

(y,a)∈G
αya >

1

A
.

Since


k αy′k = 1, we have:


k ̸=a′

αy′k = 1− αy′a′ ,

which implies that there exists j ̸= a′ such that:

αy′j ≥
1− αy′a′

A− 1
.

Given that αy′a′ < 1
A and A ≥ 2, it follows that

1− αy′a′

A− 1
>

1

A
,

and hence αy′j >
1
A . Therefore, we have

max(i1y′j , i
2
y′j) = i1y′j = − αy′j

c · (1
A − αy′j)

− 1.

13

Since i1ya is a decreasing function in αya ∈ (1
A , 1], we have

i1y′j ≤ −
1−αy′a′
A−1

c · (1
A − 1−αy′a′

A−1)
−1 =

1− αy′a′

c · (1
A − αy′a′)

−1 = i2y′a′ .

Thus: i1y′j ≤ i2y′a′ , and since i1y′′a′′ ≤ i1y′j , we conclude
that the upper bound of β is: βmax = i1y′′a′′ . For the
lower bound of β, we can follow the same previous step,
but we choose β = −1 as the lower bound (β = −1
satisfies Eq. (9) and simulates ERM training as shown in
Sec. 4.1.3). In conclusion, for the known attributes case, we
tune β within the interval: [βmin,βmax] = [−1, i1y′′a′′]. The
upper bound βmax is inversely proportional to both c, A.
Consequently, larger values of c reduce the feasible range
for the extrapolation factor, making GERNE appear more
sensitive to small variations in β.

D. Algorithm 2

Algorithm 2 GERNE for the unknown attribute case

Input: Xy ⊆ X for y ∈ Y , f with initial θ = θ0, θ̃ = θ̃0
(parameters of the biased model f̃),# epochs E, batch size
per class labelB,# classesK,# attributes Ã = 2, learning
rate η.
1: Training f̃ on biased batches with class bal-

anced accuracy CBA = 1
K


y∈Y Px|y(y =

argmaxy′∈Y f̃y′(x)) as the evaluation metric
for model selection.

2: Select a threshold t and create the pseudo-groups G̃:
For each class y, we compute the predictions ỹi =
softmax(f̃(xi))y for each xi ∈ Xy . We then form the
pseudo-minority group Xy,ã=1 as the samples xi that
have the smallest ⌊t · |Xy|⌋ predictions. The remain-
ing samples form the pseudo-majority group Xy,ã=2 =
Xy \ Xy,ã=1.

3: Follow Algorithm 1 with G̃ replacing G. We consider
a higher upper bound for β than βmax derived in Ap-
pendix C as justified by the proof of Proposition 1. in
Appendix E.

E. Proposition 1.
Creating both biased and less biased batches using
the pseudo-groups G̃, and with β as a hyperparam-
eter, we can simulate batches with a more control-
lable conditional attribute distribution. Specifically, for
(y, a) ∈ G, we can achieve scenarios where pext(a|y) >
maxã∈Ã p(a|ã, y) or pext(a|y) < minã∈Ã p(a|ã, y) as op-
posed to Eq. (13).
Proof. We define αyã the same way as in Eq. (2) for the
created pseudo-groups: αyã =

|Xy,ã|
|Xy| . For a constant c and

A = 2, we create the less biased batch as in Eq. (4):

plb(ã|y) = αyã + c · (1
2
− αyã). (27)

Similar to Eq. (8), the conditional attribute distribution
pext(ã|y) is given by:

pext(ã|y) = αyã + c · (β + 1) · (1
2
− αyã). (28)

We can write pext(a|y) as follows:

pext(a|y) =


ã∈Ã

pext(ã|y) · p(a|ã, y). (29)

Placing Eq. (28) in Eq. (29), we get

pext(a|y) =


ã∈Ã

αyã·p(a|ã, y)+c·(β+1)·(1
2
−αyã)·p(a|ã, y).

(30)
For p(a|ã = 1, y) ̸= p(a|ã = 2, y) and αy1 ̸= 1

2 , to make
pext(a|y) = p for some p ∈ [0, 1], we tune β until reaching
the βtarget defined as follows:

βtarget =
p−

ã∈Ã αyã · p(a|ã, y)
ã∈Ã c · (12 − αyã) · p(a|ã, y)

− 1. (31)

Discussion. When αy1 = 1
2 , our algorithm is equivalent

to sampling uniformly from Xy and equally from classes.
When p(a|ã = 1, y) = p(a|ã = 2, y), it implies that
f̃ has distributed the samples with attribute a and class y
equally between the two pseudo-groups Xy,ã∈A. However,
in practice, this is exactly the scenario that f̃ is designed
to avoid. Specifically, if a represents the presence of spu-
rious attributes (i.e., the majority group), it is likely that
p(a|ã = 1, y) < p(a|ã = 2, y). Conversely, when a rep-
resents the absence of spurious features (i.e., the minority
group), we would expect p(a|ã = 1, y) > p(a|ã = 2, y). In
fact, f̃ is explicitly trained to exhibit a degree of bias, which
inherently disrupts the above equality.

F. Implementation Details
F.1. Implementation Details for Datasets-1
For the C-MNIST [3, 27], we deploy a multi-layer percep-
tron (MLP) with three fully connected layers, while for
C-CIFAR-10 [15, 31] and bFFHQ [22, 27], we employ
ResNet-18 model [14], pretrained on ImageNet1K [8], as
the backbone. We apply the Stochastic Gradient Descent
(SGD) optimizer with a momentum of 0.9 and a weight
decay of 10−2 across all three datasets. We set the batch
size to 100 per group or pseudo-group for both C-MNIST
and C-CIFAR-10, and to 32 for bFFHQ. For C-MNIST, we
use a learning rate of 10−1 in the known attributes case and

14

10−2 in the unknown attributes case. For C-CIFAR-10 and
bFFHQ, we use a learning rate of 10−4.

In the unknown attribute case, we treat the threshold t
as an additional hyperparameter that requires tuning. We
avoid using any data augmentations, as certain transforma-
tions can unintentionally fail to preserve the original label.
For example, flips and rotations in C-MNIST can distort la-
bels (e.g., a rotated “6” appearing as a “9”) [41]. For train-
ing f̃ in case of unknown attributes in the training set, we
employ the same model architecture as f , with modifica-
tions to the hyperparameters: the weight decay is doubled,
and the learning rate is reduced to one-tenth of the learning
rate used to train f . The loss function used is the Cross-
entropy loss for all the experiments.

F.2. Implementation Details for Datasets-2
To ensure a fair comparison between GERNE and the meth-
ods in [50], we adopt the same experimental settings. For
Waterbirds [46] and CelebA [30] datasets, we use a pre-
trained ResNet-50 model [14] as the backbone, while for
CivilComments [5], we use a pretrained BERT model [9].
We append an MLP classification head withK outputs. We
employ SGD with a momentum of 0.9 and a weight decay
of 10−2 for Waterbirds and CelebA. For CivilComments,
we use AdamW [24] optimizer with a weight decay of 10−4

and a tunable dropout rate. We set batch sizes to 32 for both
Waterbirds and CelebA and 5(16) per group(pseudo-group)
for CivilComments. The learning rates are configured as
follows: 10−4 for Waterbirds and CelebA, and 10−5 for
CivilComments. Additionally, we set the bias reduction fac-
tors c to 0.5 for Waterbirds and CelebA and to 1 for Civil-
Comments. For image datasets, we resize and center-crop
the images to 224×224 pixels. In the case of unknown at-
tributes in the training set, f̃ has the same architecture as
f , but we adjust the hyperparameters: the weight decay is
doubled, and the learning rate is reduced to one-tenth of the
value used to train f . We employ the Cross-entropy loss as
the loss function across all experiments. For experiments
with unknown attributes in both the training and validation
sets, we limit the search space for t to the interval [0, 1

2].

G. Evaluating GERNE with Limited Attribute
Information

To further demonstrate the effectiveness of GERNE in sce-
narios with limited access to samples with known attributes,
we conduct two experiments on the CelebA dataset using
only the validation set with its attribute information for
training (excluding the training set). We follow the same
experimental setup and implementation details outlined in
Appendix F.2. As part of the implementation, we first tune
the hyperparameters using the designated evaluation met-
ric. Once we determine the optimal hyperparameters, we
fix them and train the model f three times with different

random seeds. Finally, we report the average worst-group
test accuracy and standard deviation across these runs.

Evaluation on the Test Set. In this experiment, we train
the model f using the entire validation set and use the worst-
group test accuracy as the evaluation metric. This setup
represents the best possible performance achievable when
relying solely on the validation set for training.

Cross-Validation. In this experiment, we divide the val-
idation set into three non-overlapping folds, ensuring that
each fold preserves the same group distribution as the origi-
nal validation set. Specifically, we randomly and evenly dis-
tribute samples from each group in the validation set across
the folds. We train f using two of the folds, and use the
remaining fold for hyperparameter tuning and model selec-
tion, where the worst-group accuracy on this fold serves as
the evaluation metric. We repeat this process three times
so that each fold is used once as the validation fold. Fi-
nally, we report the average worst-group test accuracy and
standard deviation across all nine runs (three folds × three
seeds) in Tab. 3.

We compare the results of GERNE with DFR, a method
that trains the final layer on the validation set following
ERM training on the training set. GERNE consistently
achieves state-of-the-art results, demonstrating its robust-
ness and effectiveness even under limited attribute informa-
tion.

Table 3. Performance comparison of GERNE and DFR. GERNE
uses only the validation set for training. We report the worst-group
test accuracy (%) and standard deviation over three trials.

Method WGA on Test Set (%)

DFR 86.30 ± 0.30
GERNE — Evaluation on Test Set 90.97 ± 0.35
GERNE — Cross-Validation 88.63 ± 0.59

15

