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Abstract

Machine learning classification models trained with em-
pirical risk minimization (ERM) often inadvertently rely on
spurious correlations. When absent in the test data, these
unintended associations between non-target attributes and
target labels lead to poor generalization. This paper ad-
dresses this problem from a model optimization perspec-
tive and proposes a novel method, Gradient Extrapolation
for Debiased Representation Learning (GERNE), designed
to learn debiased representations in both known and un-
known attribute training cases. GERNE uses two distinct
batches with different amounts of spurious correlations and
defines the target gradient as a linear extrapolation of the
gradients computed from each batch’s loss. Our analy-
sis shows that when the extrapolated gradient points to-
ward the batch gradient with fewer spurious correlations,
it effectively guides training toward learning a debiased
model. GERNE serves as a general framework for debi-
asing, encompassing methods such as ERM, reweighting,
and resampling, as special cases. We derive the theoret-
ical upper and lower bounds of the extrapolation factor
employed by GERNE. By tuning this factor, GERNE can
adapt to maximize either Group-Balanced Accuracy (GBA)
or Worst-Group Accuracy (WGA). We validate the proposed
approach on five vision and one NLP benchmarks, demon-
strating competitive and often superior performance com-
pared to state-of-the-art baselines. The code is available
at: https://gerne-debias.github.io/

1. Introduction

Deep learning models have demonstrated significant suc-
cess in various classification tasks, but their performance is
often compromised by datasets containing prevalent spuri-
ous correlations in the majority of samples [13, 18, 29, 52].
Spurious correlations refer to unintended associations be-
tween easy-to-learn non-target attributes and target labels,
leading models based on Empirical Risk Minimization
(ERM)- a widely used approach in classification tasks [45]-
to rely on these correlations instead of the true, intrinsic

features of the classes [10, 12, 40]. This occurs because
the ERM objective optimizes for the average performance
[45], which results in poor generalization when these spu-
rious features are absent. For instance, in the Waterbirds
classification task [46], where the goal is to classify a bird
as either a waterbird or a landbird, the majority of water-
birds are associated with water backgrounds. In contrast,
the majority of landbirds are associated with land back-
grounds. A model trained with ERM might learn to clas-
sify the birds based on the background-water for waterbirds
and land for landbirds-rather than focusing on the birds’ in-
trinsic characteristics. This reliance on the spurious feature
allows the model to perform well on the majority training
samples, where these correlations hold, but fails to general-
ize to test samples where these correlations are absent (e.g.,
waterbirds on land). Examples of Waterbirds images shown
in Fig. la. Avoiding spurious correlations is crucial across
various applications, including medical imaging [25, 37],
finance [11], and climate modeling [17].

This pervasive challenge has spurred extensive research
into strategies for mitigating the negative effect of spurious
correlations, particularly under varying levels of spurious
attribute information availability. The authors of [50] pro-
vide a comprehensive review of the methods and research
directions aimed at addressing this issue. In an ideal sce-
nario, where attribute information is available in both the
training and validation sets, methods can leverage this in-
formation to counteract spurious correlations [16, 39, 48].
When attribute information is available only in the valida-
tion set, methods either incorporate this set into the training
process [18, 32, 42] or restrict its use to model selection
and hyperparameter tuning [27-29, 31, 35]. Despite these
efforts, existing methods still struggle to fully avoid learn-
ing spurious correlations, especially when the number of
samples without spurious correlations is very limited in the
training dataset, leading to poor generalization on the test
data where these correlations are absent.

In this paper, we adopt a different research approach,
seeking to address the issue of spurious correlations from
a model optimization perspective. We propose a novel
method, Gradient Extrapolation for Debiased Represen-
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tation Learning (GERNE), to improve generalization and

learn debiased representations. The contributions of this pa-

per can be summarized as follows:

* We propose GERNE, a novel and easy-to-implement de-
biasing method in classification tasks. The core idea is
to sample two types of batches with varying amounts
of spurious correlations and compute the two losses on
these two batches. We linearly extrapolate the gradients
of these two losses to obtain a target gradient. The target
gradient, controlled by an extrapolation factor, is used to
update the model’s parameters.

* The proposed gradient extrapolation approach is pre-
sented theoretically as a general framework for debias-
ing with methods, such as ERM, reweighting, and resam-
pling, being shown as special cases.

* The extrapolation factor’s theoretical upper and lower
bounds are derived to ensure convergence, and its impact
on performance is experimentally discussed.

* We also establish a link between the extrapolation fac-
tor and both the Group-Balanced Accuracy (GBA) and
Worst-Group Accuracy (WGA) metrics and generalize
GERNE to the case with unknown attributes.

* We highlight that in a biased dataset, overpresenting the
minority groups in the sampled batches (compared to the
majority) might be beneficial and can lead to SOTA re-
sults.

* We validate our approach on six benchmarks spanning
both vision and NLP tasks, demonstrating superior per-
formance compared to state-of-the-art methods.

2. Related Work

Debiasing according to attributes annotations availabil-
ity. Numerous studies have leveraged attribute annota-
tions to mitigate spurious correlations and learning debi-
ased representation [3, 39, 51, 53, 55]. For instance, Group
DRO [39] optimizes model performance on the worst-case
group by minimizing worst-group error during training.
While these methods are effective, obtaining attribute anno-
tations for each sample can be extremely time-consuming
and labor-intensive. Consequently, recent works have ex-
plored approaches that rely on limited attribute-labeled data
to reduce the dependency on full annotations [18, 32, 42].
For example, DFR [18] enhances robustness by using a
small, group-balanced validation set with attribute labels
to retrain the final layer of a pre-trained model. For cases
where attribute information is only available for model se-
lection and hyperparameter tuning [6, 16, 28, 31, 54], usu-
ally an initial model is used to separate samples based on the
alignment between the label and spurious attributes. Sam-
ples for which this model incurs relatively low loss are con-
sidered “easy” examples, where we expect the alignment
to hold and the samples to closely resemble the majority
group. In contrast, samples with high loss are considered

“hard” examples, and these samples tend to resemble the
minority group [49]. This process effectively creates “easy”
and “hard” pseudo-attributes within each class, allowing de-
biasing methods that traditionally rely on attribute informa-
tion to be applied. For example, JTT [28] first trains a stan-
dard ERM model and then trains a second model by up-
weighting the misclassified training examples detected by
the first model. Finally, a more realistic and challenging
scenario arises when attribute information is entirely un-
available [4, 43]-not accessible for training, model selec-
tion, or hyperparameter tuning-requiring models to gener-
alize without explicit guidance on non-causal features [50].

Debiasing via balancing techniques. A prominent fam-
ily of solutions to mitigate spurious correlations across
the aforementioned scenarios of annotation availability in-
volves data balancing techniques [7, 16, 19, 21, 36, 40, 47].
These methods are valued for their simplicity and adaptabil-
ity, as they are typically faster to train and do not require
additional hyperparameters. Resampling underrepresented
groups to ensure a more balanced distribution of samples
[16, 19] or modifying the loss function to adjust for imbal-
ances [38] are common examples of these techniques. We
demonstrate in Sec. 5.3 that although the balancing tech-
niques are effective, their performance is constrained in the
presence of spurious correlations. In contrast, our proposed
debiasing approach mitigates the negative effects of spuri-
ous correlations by guiding the learning process in a debi-
asing direction, proving to be more effective.

3. Problem Setup

We consider a standard multi-class classification problem
with K classes and A spurious attributes. Each input sample

z; € X ={z; | j =1,...,N}is associated with a class
label y; € ¥ = {1,...,K} and an attribute a; € A =
{1,..., A}, where N is the total number of samples in the

dataset. We define a group X, , for (y,a) € G =Y x Aas
the set of input samples x; with class label y and attribute a,
resulting in |G| = K - A groups. For each class y, we denote
by Xy = Uueca Xy.q the set of all samples with label y. We
assume all groups are non-empty, i.e., V(y,a) € G, X, , #
(), and denote the cardinality of any group X, by | X, |.

Our goal is to learn the intrinsic features that define
the labels rather than spurious features present in a biased
dataset. This would ensure robust generalization when spu-
rious correlations are absent in the test distribution. Fol-
lowing [39], we aim to learn a function parameterized by a
neural network f* : X — R¥ to minimize the risk for the
worst-case group:

f* = arg Hf;in I;EigxEac~p(:7(:\(y,a):g) [E(y’ f(.l?))] s (D

where £(y, f(z)) — R is the loss function.
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Figure 1. (a): Sample images from the waterbirds classification task. Most landbird images appear with land backgrounds (i.e.,y = 1,a =
1), while most waterbird images appear with water backgrounds (i.e., y = 2, a = 2). This correlation between bird class and background
introduces spurious correlations in the dataset. (b): Visualization of batch construction. B; shows a biased batch where the majority of
images from class y = 1 (top row) have attribute a = 1 (yellow), and most images from class y = 2 (bottom row) have attribute a = 2
(light-blue). By, represents a less biased batch, with a more balanced attribute distribution within each class, controlled by c (here ¢ = %).
B, depicts a group-balanced distribution and refers to batch sampled using the Resampling method [16]. Bes: simulates GERNE’s batch
with ¢ - (8 + 1) > 1, where the dataset’s minority group appears as the majority in the batch. (c): A simplified 2D representation of
gradient extrapolation where § € R?. VL, is the gradient computed on By; training with this gradient is equivalent to training with ERM
objective. VgL, represents the gradient computed on Byy,. VgL, is the gradient computed on B,.s, which is equivalent to an extraplated
gradient with ¢ - (8 + 1) = 1. Finally, VgL is our extrapolated gradient, with the extrapolation factor 5 modulating the degree of
debiasing in conjunction with the strength of spurious correlations present in the dataset.

4. The Proposed Method: GERNE 2. Uniform sampling from groups, i.e., V(y,a) €
g,p(zly,a) = %ﬁ forz € X q.
The biased batch (Bb) is sampled with a conditional at-
tribute distribution pj(a|y) within each class y to reflect the
inherent bias present in the dataset. Specifically, p,(aly) =

We build GERNE with the goal of mitigating the impact of
spurious correlations. The core idea of GERNE is to sample
two batches with different amounts of spurious correlations,
hereafter named the biased batch Bj and the less biased

batch By, (Fig. 1b). Let Ly, £, be the losses calculated Qya, Where: W

on By and By, respectively. We assume that extrapolating Oy = | X’T . 2)
the gradients of these two losses towards the gradient of Ly, v

guides the model toward debiasing as illustrated in Fig. Ic. Note that to sample a biased batch, no access to the at-
We first present GERNE for training with known attributes tributes is required, and uniformly sampling from X, for

and then generalize GERNE to the unknown attribute case. each label y satisfies Eq. (2). The less biased batch (Bs)
is sampled with a conditional attribute distribution, denoted

as pyp(aly), which satisfies the following: V(y,a) € G:
4.1. GERNE for the Known Attributes Case

.1 1

In the following, we denote by p(y, a) the joint distribution mln(z,pb(a|y)) < pw(aly) < max(z,pb(a|y)). 3)
of class label y and attribute a in a sampled batch. During
training, we construct two types of batches with different
conditional attribute distributions p(a|y): the biased and the
less biased batches. Our method defines the target loss as a
linear extrapolation between the losses computed on these 1 1

two batches. A simplified illustration is shown in Fig. 1. pis(aly) = (1—c) -pb(a\y)—kc-z - O‘y“"_c'(z_ay“) )
Finally, we derive the link between the extrapolation factor
and the risk of the worst-case group in Eq. (1), and theoret-
ically define the upper and lower bounds of this factor.

That is, By, exhibits a more balanced group distribution
than By, and L, quantifies the loss when spurious corre-
lations are reduced in the sampled batch. Choosing

satisfies the inequality in Eq. (3), where ¢ € (0,1] is a hy-
perparameter that controls the degree of bias reduction. An
example of the two types of batches is presented in Fig. 1b.

4.1.1. Sampling the biased and the less biased batches 4.1.2. Gradient extrapolation

The biased batch and the less biased batches are sampled to
satisfy the following two conditions:
1. Uniform sampling from classes, i.e., Vy € Y, p(y) = % Lewt = Lip+ B+ (L — Ls), (5)

We define our target loss L., as follows:



where [ is a hyperparameter, and the loss form given the
joint distribution p(x, y, a) is defined as:

L =E(z,y,a0)~p(zy.0) €Y, f(2))] - (6)

Given the set of parameters 6 of our model f, the gradient
of L., with respect to 6 can be derived from Eq. (5):

VoLext = VoLl + - (VoL — VoLly). @)

Our target gradient vector Vg L.,; in Eq. (7) is a linear ex-
trapolation of the two gradient vectors VoL, and VyLy,
and accordingly, we refer to 5 as the extrapolation fac-
tor. Because the less biased batch has a less skewed con-
ditional attribute distribution compared to the biased batch
(as shown in Eq. (3)), extrapolating their gradients and to-
ward the less biased gradient forms a new gradient (L)
that leads to learning even more debiased representation for
some values of the extrapolation factor § > 0. A visual
representation of extrapolation is shown in Fig. Ic.

4.1.3. GERNE as general framework for debiasing

Minimizing our target loss L.,; simulates minimizing the
loss of class-balanced batches with the following condi-
tional distribution of (y,a) € G :

1
pewt(a|y) =Qyq t+C- (6 + 1) : (A - aya) . )

We provide the full proof in Appendix A.

Based on Eq. (8), we can establish the link between

GERNE and other methods for different values of 3, ¢
- For 8 = —1, L.+ = L and GERNE is equlvalent to
class-balanced ERM method.

-Forc = 1and 8 = 0, pest(aly) = 4, and GERNE
matches the resampling method [16], Wthh samples
equally from all groups (B, in Fig. 1b, with gradient of
the loss computed on it denoted as VyL,.; in Fig. 1c).

- Forc- (B + 1) = 1, we also have pey(aly) = 4, and
L.+ 18, in expectation, equivalent to L,.;. However, their
loss variances differ. In fact, GERNE permits controlling
the variance of its loss through its hyperparameters (c, ),
which may help escape sharp minima [!] and improve
generalization [23]. The derivation of the variance of
GERNE’s loss is detailed in Appendix B.

-Forc- (B+1) > 1, peat(aly) > & ifaye < & (also
Pext(aly) < % if ayq > %). In this case, GERNE sim-
ulates batches where the underrepresented groups (i.e.,
those with oy < %) are oversampled.

4.1.4. Upper and lower bounds of 3

Having pes:(aly) in Eq. (8) within [0, 1], 5 should satisfy:
. /1 2
max min(i,,, i,
(y.a)€g Uyariya) <
ayaF i

< min max(il_, i),
B< oyl (iyasiya) ©)

Qya 5‘6 A

R R Qyq _ _ l—aye
where: i, = e s 1,zya e S——1 1
These bounds are used when tuning 3. In Appendix C, we
simplify these bounds to [Bmin, Smax] = [—1,14 J//a,,] where

(y",a") = argmax(, q)cg vy Note that 3 doesn’t affect
Pext(aly) for ay, = % according to Eq. (8).

4.1.5. Tuning 3 to minimize the risk of worst-case group

Eq. (5) can be rewritten as follows (detailed in Appendix A):

1

Eemt - ? . Z pemt(a|y)(5) : Lg> (10)

9=(y,a)€g

where
o) [E(y, f(2))]. (11)

In the presence of spurious correlatlons, minority or less-
represented groups often experience higher risks, primarily
due to the model’s limited exposure to these groups during
training [20]. Taking this into consideration, we define ¢’ =
(v',a') = argming, 4)eg aya. Since Ly is weighted by
Peat(a’|y’), increasing 8 beyond 1 — 1 assigns more weight
to Ly in Eq. (10) than any other group loss (all groups’
losses are equally weighted when ¢ - (8 + 1) = 1). This
increase in 3 encourages the model to prioritize reducing
the loss of the underrepresented group ¢’ during training,
therefore minimizing the risk of the worst-case group.

We outline the detailed steps of our approach for the
known attribute case in Algorithm 1.

Ly = anp(ﬂﬂl(%

Algorithm 1 GERNE for the known attribute case
Input: X, , C X fory € YV and a € A, f with initial
0 = 0y, # epochs F, batch size per label B, # classes K,
# attributes A, learning rate 7).
1: Choose ¢ € (0,1] and 8 € [Bumin, Bmax] Via grid search.
2: for epoch = 1to £ do
3: Biased Batch B;, = (), Less Biased Batch By, = ()
4
5

for (y,a) € G do
Sample a mini-batch B;"* = {(z,y)} C X,
of size oy 4 - B;

6: B, =ByU Bé”a
7: Sample a mini-batch B}}* = {(z,y)} C X,

of size (1 —c¢)-aya+ 5) B
By, = By U Bp*
: end for
10: Compute Ly, Ly, on By, By, respectively. Then,
compute Vo Ly, and VL.
11: Compute VgL, using Eq. (7).
12: Update parameters (SGD): 0 «— 0 — - Vg Lyt
13: end for

o ®

4.2. GERNE for the Unknown Attributes Case

If the attributes are unavailable during training, it is not pos-
sible to directly sample less biased batches. To address this,



we follow the previous work [28, 31, 54] by training a
standard ERM model f and using its predictions to create
pseudo-attributes a. Since f is trained on biased batches,
it tends to rely on spurious correlations, resulting in bi-
ased predictions. Leveraging these predictions, we classify
samples into easy—those with high-confidence predictions,
where the spurious correlations likely hold— and hard —
those with low-confidence predictions, where the spurious
correlations may not hold. After training f, we select a
threshold ¢ € (0, 1) and construct pseudo-attributes based
on model predictions as follows: For each class y, we com-
pute the predictions §; = p(y|z;) = softmax(f(x;)), for
each x; € X,. We then split them into two non-empty sub-
sets: The first subset contains the smallest |¢ - |X,|] values,
and the corresponding samples form the group X, 5—1. The
remaining samples forms the group X, ;—>. This process
ensures that each set X is divided into two disjoint and non-
empty groups. Consequently, the pseudo-attribute space
consists of two values, denoted as A = {1,2} (i.e., A = 2)
with g Y x A replacing G in the unknown attrlbute case.
t is a hyperparameter, and we outline the detailed steps of
GERNE for the unknown case in Appendix D.

4.2.1. Tuning 3 to control the unknown conditional dis-
tribution of an attribute « in class y

After creating the pseudo-attributes and defining the
pseudo-groups, we consider forming a new batch of size B
by uniformly sampling « - B examples from group X, 5—:
and (1 — ) - B examples from group X, z—o, where v €
[0,1],v - B € N. The resulting conditional distribution of
an attribute a given y in the constructed batch is:

slaly) =Y ps(ily)-

acA

plala, y) 12)

Because the max/min value of a linear program must occur
at a vertex, we have for p(a|a, y) = pa,y(a):

Vv € [0,1], min pa 4 (a) < pp(aly) < maxpa,(a) (13)
acA acA

This means that if: maxg pa,y(a) < % (ming pa,y(a) > §),
then there is no value for ~y can yield a batch with pg (aly) >
4 (ps(aly) < %) via sampling from the pseudo-groups.

Proposition 1. Creating a biased and less biased
batch with the pseudo-attributes A = 2, GERNE
can simulate creating batches with more controllable
conditional attribute distribution (i.e., pp(aly) >
max;. iPay(a)orpp(aly) < ming. jpay(a)). We
provide the proof of this proposition in Appendix E.

5. Experiments

To assess the general applicability of GERNE, we evalu-
ate its performance on five computer vision datasets and

one natural language processing dataset: Colored MNIST
(C-MNIST) [3, 27], Corrupted CIFAR-10 (C-CIFAR-
10) [15, 31], Biased FFHQ (bFFHQ) [22, 27], Waterbird
[46], CelebA [30], and CivilComments [5]. We categorize
these datasets into two groups: Datasets-1 and Datasets-
2. Datasets-1 includes the first three datasets mentioned
above and is used to evaluate GERNE’s performance with-
out data augmentation. Datasets-2 includes the remaining
three datasets, where our implementation follows the setup
n [50] to ensure a fair comparison.

5.1. Experiments on Datasets-1

Datasets. The C-MNIST dataset represents an extension
of the MNIST dataset [26], incorporating colored digits.
Each digit is highly correlated with a specific color, which
constitutes its majority group. In the C-CIFAR-10 dataset,
each category of images is corrupted with a specific type
of texture noise [15]. The bFFHQ dataset comprises hu-
man face images, with age” and “gender” as the target and
spurious attributes, respectively. The majority of images de-
picting females are labeled as ”young” while the majority of
images depicting males are labeled as ~old”.

Evaluation metrics. For both C-MNIST and C-CIFAR-
10, we train with varying ratios of the minority to major-
ity examples (0.5%, 1%, 2%, and 5%), and we follow the
evaluation setup of [29, 31] using GBA on the test set as
our evaluation metric. For bFFHQ, we train models with a
0.5% minority ratio and evaluate the performance based on
the accuracy of the minority group in line with [27].

Baselines. We consider six baseline methods: For the
known attribute case, we compare GERNE with Group
DRO [39]. For the unknown attribute case, our baselines
are ERM [45], JTT [28], LfF [31], DFA [27], LC [29],
and DeNetDM [44].

Implementation details. We adopt the same model archi-
tectures as the baseline methods and utilize the SGD opti-
mizer with a momentum of 0.9 and weight decay of 0.01
across all three datasets. Additional implementation details
in Appendix F.1.

Results. Tab. | compares our results with baseline meth-
ods for both known and unknown attribute cases. The re-
sults of all baseline methods are adopted from [29] except
for DeNetDM, which is sourced from [44]. When the at-
tributes are known, GERNE outperforms Group DRO by a
significant margin on C-MNIST and C-CIFAR-10 datasets.
The improvement in performance ranges from about 5% on
C-CIFAR-10 with 5% of minority group and up to 16%
on C-MNIST with 1% of minority group. Furthermore,



Table 1. Performance comparison of GERNE and baseline methods on the C-MNIST, C-CIFAR-10, and bFFHQ datasets. We report
the GBA (%) and standard deviation over three trials on the test set for C-MNIST and C-CIFAR-10, with varying ratios (%) of minority
samples. For bFFHQ, we report the minority group accuracy (%). Baseline results are sourced from [29] as the same experimental settings
are adopted. v'/x indicate the presence/absence of attribute information in the training set, respectively. The best results are marked in

bold, and the second-best are underlined.

C-MNIST C-CIFAR-10
Methods Group bFFHQ
Info 05 1 2 5 0.5 1 2 5

Group DRO v 63.12 68.78 76.30 84.20 33.44 3830 45.81 5732 ;
GERNE(c=1,8=0) « 77684089 84364021 83.15+0.11 91.98-+0.08 45104060 50.08-+£042 54854030 62.1640.05 72.13 +0.90
GERNE (ours) v 71791090 84474037 88304020 92.16 +0.10 4534 +0.60 50.84 +0.17 5551 +0.10 62.40 £0.27 85.20 +0.86
ERM X 35194349 52004288 6586+359 82174074 2308+ 125 28524033 3006+ 071 3942+ 064 5670 % 2.70
JITT X 53.03+389 6290 %301 7423 +321 8403+ 110 2473 +0.60 2690+ 031 3340+ 1.06 4220+ 031 6530 % 2.50
LIF X 5250 +243 6189497 71.03+ 114 8479+ 1.09 2857+ 1.30 33.07+0.77 3991+ 1.30 50.27 + 1.56 62.20 + 1.60
DFA X 6522+441 81734234 84794095 89.66+ 1.09 2075+ 071 3649+ 179 41.78+£229 5013+ 128 63.90 + 0.30
LC X 7125+3.17 82254211 8621+ 1.02 9116+ 097 3456+ 0.69 3734+ 126 47.81 £2.00 5455+ 126 69.67+ 1.40
DeNetDM X 74724099 85224076 8929+ 051 9354 E022 3893+ 1.16 4420+ 077 47354070 5630+ 042 75.70 + 2.80
GERNE (ours) x  T725E017 8398+026 87.41+031 90.98+0.13 39.90F 043 45.60f 023 50.19F0.18 5653+ 032 7680 £ 1.21

we show that we outperform the resampling method [16]
(c = 1,8 = 0) for all ratios. More discussion added
to Appendix H. For bFFHQ, GERNE results in an im-
provement of over 13% in comparison with the resam-
pling method. For the unknown attribute case, GERNE
outperforms all baselines, except for C-MNIST with 1%,
2% (ranks second) and 5% of minority group, while main-
taining a lower standard deviation, despite not employing
any data augmentation techniques. At this 5% ratio, LC
achieves slightly higher accuracy-likely benefiting from its
use of data augmentation to enrich bias-conflicting samples.
Though DeNetDM excels on C-MNIST, its hypothesis-that
shallower networks isolate core attributes while deeper ones
capture spurious features-relies on a simple bias structure
and linear feature decodability tied to network depth. In
contrast, GERNE demonstrates better generalization when
complex spurious features are present.

5.2. Experiments on Datasets-2

Datasets. We evaluate GERNE on three commonly used
datasets [50]: Waterbirds [46], CelebA [30] and CivilCom-
ments [5].

Evaluation metrics. We follow the same evaluation strat-
egy from [50] for model selection and hyperparameter tun-
ing. When attributes are known in both training and vali-
dation, we use the worst-group test accuracy as the evalu-
ation metric. When attributes are unknown in training, but
known in validation, we use the worst-group validation ac-
curacy. When attributes are unavailable in both, we use the
worst-class validation accuracy.

Baselines. For each dataset, we select the three best per-
forming methods reported in [50]. We end up with
ERM [45], Group DRO [39], DFR [18], LISA [51], Re-
Sample [19], Mixup [53], ReWeightCRT [21], ReWeight

[19], CBLoss [7], BSoftmax [36] and SqrtReWeight [50].
We also report the results for CnC [54] as it adopts similar
training settings.

Implementation details. We employ the same data aug-
mentation techniques, optimizers and pretrained models de-
scribed in [50]. Further details are in Appendix F.2.

Results Tab. 2 shows the worst-group accuracy of the test
set for GERNE against the baseline methods under the eval-
uation strategy explained above. In the case of known at-
tributes, GERNE achieves the highest performance on the
CelebA and CivilComments datasets and ranks second on
Waterbirds, following DFR. In case of unknown attributes
in training set but known in validation, our approach again
achieves the best results on the Waterbirds and CivilCom-
ments datasets and remains competitive on CelebA, closely
following the top two baseline results. Notably, DFR uses
the validation set to train the model, whereas GERNE only
uses it for model selection and hyperparameter tuning. We
include a comparison of our method’s performance against
DFR, where GERNE also uses the validation set for train-
ing, in Appendix G. In the scenario where attributes are un-
known in both the training and validation sets, our approach
achieves the best results on the Waterbirds and CelebA
datasets. However, we observe a significant drop in accu-
racy on CelebA compared to the second case (unknwon at-
tributes in training but known in validation), while this drop
is less pronounced on Waterbirds. This can be explained
by the worst-class accuracy evaluation metric. In the vali-
dation set of CelebA, the majority examples in class 1 ex-
hibit spurious correlations, leading to selection process to
favor the majority group while disregarding the minority
group. However, the validation set of Waterbirds has bal-
anced groups within each class, resulting in only a slight
performance drop for GERNE between the second and third



case. This highlights the critical role of having access to the
attributes in the validation set or having a group-balanced
validation set for model selection and hyperparameter tun-
ing when aiming for better results with GERNE.

Table 2. Performance comparison of GERNE and baseline meth-
ods on the Waterbirds, CelebA, and CivilComments datasets. We
report the worst-group test accuracy (%) and standard deviation
over three trials on the test of each dataset. Baseline results are
sourced from [50] as the same experimental settings are adopted.
v'/v indicates known attributes in training and validation sets.
x /v in validation set only, and X /X in neither. Best results are
highlighted in bold, and the second-best are underlined.

Group Info
Methods —————  Waterbirds CelebA Civil-
train/val attr. Comments

ERM VIV 69.10 2470 62.60 + 1.50 63.70 & 1.50
Group DRO VIV 78.60 + 1.00 89.00 £+ 0.70  70.60 £ 1.20
ReWeight VIV 86.90 £ 0.70 89.70 & 0.20 65.30 & 2.50
ReSample VIV 77.70 & 1.20  87.40 £+ 0.80 73.30 £ 0.50
CBLoss VIV 86.20 = 0.30 89.40 £0.70 73.30 £ 0.20
DFR VIV 91.00 + 0.30  90.40 + 0.10  69.60 £ 0.20
LISA VIV 88.70 £ 0.60 86.50 & 1.20 73.70 £ 0.30
GERNE (ours) VIV 90.20 + 0.22 9198 + 0.15 74.65 £ 0.20
ERM XV 69.10 +4.70 57.60 £+ 0.80 63.20 £ 1.20
Group DRO XIV 73.10 = 0.40 7850 £ 1.10  69.50 £ 0.70
ReWeight XIV 72.50 +0.30 81.50 £ 0.90 69.90 £ 0.60
DFR X1V 89.00 £0.20 86.30 & 0.30  63.90 £ 0.30
Mixup XIV 78.20 +0.40 57.80 £ 0.80 66.10 £ 1.30
LISA X1V 78.20 040 57.80 +0.80 66.10 & 1.30
BSoftmax XIV 74.10 = 0.90 83.30 £ 0.30 69.40 £ 1.20
ReSample XIV 70.00 + 1.00 82.20 + 1.20  68.20 £ 0.70
CnC XV 88.50+ 0.30  88.80+ 0.90 68.90+ 2.10
GERNE (ours) XIV 90.21 + 0.42 86.28 +£0.12 71.00 £ 0.33
ERM X /% 69.10 = 4.70 57.60 £+ 0.80 63.20 £ 1.20
Group DRO X/ % 73.10 £ 0.40 68.30 =090 61.50 & 1.80
DFR X/ % 89.00 4+ 0.20 73.70 4 0.80 64.40 &+ 0.10
Mixup X/ % 77.50 £ 0.70 57.80 +0.80 65.80 & 1.50
LISA X/ % 77.50 +0.70 57.80 £+ 0.80 65.80 £ 1.50
ReSample X/% 70.00 + 1.00 74.10 £+ 2.20 61.00 £ 0.60
ReWeightCRT X/ % 76.30 +0.20 70.70 £ 0.60 64.70 £ 0.20
SqrtReWeight X /% 71.00 + 1.40 66.90 £+ 2.20 68.60 + 1.10
CRT X/ 76.30 + 0.80  69.60 £+ 0.70  67.80 £ 0.30
GERNE (ours) X /% 89.88 + 0.67 74.24 +2.51 63.10 £0.22

5.3. GERNE vs. Balancing Techniques

Balancing techniques have been shown to achieve state-of-
the-art results, while remaining easy to implement [16, 50].
Notably, resampling methods often outperform reweight-
ing strategies when combined with stochastic gradient al-
gorithms [2]. Our results, as presented in Tab. 1, demon-
strate that GERNE outperforms resampling (GERNE with
¢ = 1,8 = 0) when the evaluation metric is Group-
Balanced Accuracy or Accuracy on minority group. More
discussion in Appendix H. This highlights the flexibility
of GERNE to adapt to maximize both metrics, and its su-
perior performance in comparison to resampling and other
balancing techniques, as further supported by the results in
Tab. 2. In Appendix B, we provide a detailed ablation study
comparing GERNE to an equivalent sampling+weighting
approach with matching loss expectation, and demonstrate

how GERNE leverages its controllable loss variance (by the
hyperparameters ¢, 3) to escape sharp minima.

5.4. Ablation Study

Tuning the extrapolation factor 3. The value of § in
Eq. (7) has a significant impact on the performance of our
method in debiasing the model (i.e., leading the training
process in a debiased direction and avoid learning spurious
features). In Fig. 2, we show how tuning /3 affects the learn-
ing process in the case of the C-MNIST dataset with 0.5%
of minority group in the known attribute case. We show re-
sults for 5 € {—1,0,1,1.2} withc = 0.5. For 8 = —1,
our target loss L.+ in Eq. (5) equals the biased loss Ly,
which leads to learning a biased model that exhibits high
accuracy in the majority group, yet demonstrates poor per-
formance on both the minority group and the unbiased test
set. As [ increases (e.g. 8 = 0,3 = 1), the model starts
learning more intrinsic features. This is evident from the
improved performance on the minority group in the valida-
tion set, as well as on the unbiased test set. However, as
the extrapolation factor 3 continues to increase, the model
begins to exhibit higher variance during the training pro-
cess as shown for 5 = 1.2, ultimately leading to divergence
when [ exceeds the upper bound defined in Eq. (9) which is
equal to 1.22 in this case. While GERNE appears to be sen-
sitive to small variations in 5 (e.g. 1.2 to 1.22), we show in
Appendix C that 3’s upper bound is inversely proportional
to ¢, A. By comparing the accuracies of Minority/Majority
training groups in case S = 0, 8 = 1, we can see that both
cases have around 100% accuracy on minority but higher
accuarcy on majority for 5 = 0. However, we notice a bet-
ter generalization when 8 = 1. This highlights the impor-
tance of directing the training process to the right direction
early in training while overfitting is expected as well.

How the selection of ¢ influences the optimal value of
B. To answer this question, we conduct experiments on
C-MNIST dataset with 0.5% of minority group. We first
train a biased model f, and use its predictions to generate
the pseudo-attributes for five different values of the thresh-
old ¢. Let’s refer to the pseudo-groups with a = 1 as the
pseudo-minority groups. For each threshold, we tune 3 to
achieve the best average accuracy on test set. Simultane-
ously, we compute the average precision and recall for the
minority group. As shown in Fig. 3, with t = 5 x 1074,
the average precision reaches 1, indicating that all the sam-
ples in the pseudo-minority groups are from the minority
group. However, these samples constitute less than 20% of
the total number of samples in the minority group, as indi-
cated by the average recall. Despite this, GERNE achieves
a high accuracy of approximately 70%, remaining competi-
tive with other methods reported in Tab. | while using only
a very limited number of minority samples (t = 5 x 104
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Figure 2. The impact of tuning /3 in debiasing the model 8 €
{-1,0,1,1.2} on debiasing the model. On the left column, we
plot the training losses L, £, and the target loss Lez¢. On the
right column, we plot the average accuracy of the minority and
majority groups in both training and validation, as well as the av-
erage accuracy of the unbiased test set. Each plot represents the
mean and standard deviation calculated over three runs with dif-
ferent random seeds.

corresponds to about 28 samples versus 249 minority sam-
ples out of 55,000 samples in the training set). As t in-
creases to 1073 and 3 x 1073, precision remains close to
1 while increasing the number of minority samples in the
pseudo-minority group. This increase introduces more di-
versity among minority samples within the pseudo-minority
group, allowing for lower [ values to achieve the best aver-
age accuracy on test set. However, for even higher thresh-
olds, such as t = 1072, minority samples constitute less

1.00{ o=o——a |28
8 - . 4 8
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= - g
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é \ V4 =@=Average Precision 24 a
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Figure 3. The effect of the threshold ¢ used to generate pseudo-
attributes on the extrapolation factor 5 and model performance.
We plot the average precision and recall over pseudo-minority
groups (y,a = 1), averaged across all classes y. For each
(y,a = 1), precision is defined as the fraction of minority samples
among all samples in that group, and recall is the fraction of those
minority samples relative to all minority samples in class y. We
also report the best achievable test accuracy, along with the corre-
sponding extrapolation factor 3, across different threshold values.

than 40% in the pseudo-minority group, prompting a need
to revert to higher 3 values. We conclude that identifying
the minority group is of utmost importance for achieving
optimal results (high average precision and high recall) and
this agrees with the results presented in both Tab. 1, Tab. 2
where we achieve the best results in the case of known at-
tributes.

6. Conclusion

We introduce GERNE, a novel debiasing approach that ef-
fectively mitigates spurious correlations by leveraging an
extrapolated gradient update. By defining a debiasing di-
rection from loss gradients computed on batches with vary-
ing degrees of spurious correlations, GERNE’s tunable ex-
trapolation factor allows optimizing either Group-Balanced
Accuracy (GBA) or Worst-Group Accuracy (WGA). Our
comprehensive evaluations across vision and NLP bench-
marks demonstrate GERNE’s superior performance over
state-of-the-art methods, both for known and unknown at-
tribute cases, crucially achieving this without data augmen-
tation. Furthermore, GERNE offers a unifying framework
that encompasses methods like ERM and resampling, ex-
tending its applicability to unbiased datasets. Future work
will explore dynamic adaptation of the extrapolation factor
and refine attribute estimation for cases where attributes are
unknown.
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Gradient Extrapolation for Debiased Representation Learning

Supplementary Material

A. Conditional attribute distribution of the ex-
trapolated loss: Proof of Eq. (8)

L in Eq. (6) can be written as:

c:/a%ﬂwm@m

Therefore, £y, L, can be written as:

ﬁb—/fyf
sz/a%ﬂ@m@)

Where py(aly), pis(aly) defined in Eq. (2), Eq. (4), respec-
tively, and z is uniformly sampled within each group (y, a)
(.e. p(z|y,a) = ﬁ). Substituting Eq. (14), Eq. (15) in
Eq. (5):

(aly) p(z|a, y) dx dy da.

y) po(aly) p(zla,y) dx dy da. (14)

pw(aly) p(zla, y) dz dy da. (15)

Lo = [ € 1) p(w) (ol

+ 8- (pulaly) ~ plaly)) ) - plala,y) du dy da

= /ﬁ(y,f(x))p(y

p(z|a,y) dz dy da

— [t s

Then:
1
pemt(a|y) = aya +c- (5 + ].) . (Z - O[ya).

)pemt(a|y) : p(m|a, y) dx dy da.

Furthermore, we can write L., as follows:

Lext = Eyop(y) [Eampe(aly) [Eanp(elay) [, f(2))]]]

1
= ? Z pext(al?ﬁﬁ) 'Lq
9=(y,a)€9
with Ly = E,pa|(y,a)=¢) [((y, f(x))] by using the dis-

crete expectations over y and aly, with p(y) = %.
B. GERNE versus an equivalent sampling and
weighting approach

We compare GERNE with an equivalent (in term of loss
expectation) sampling+weighting method, which we refer
to as "SW’. For simplicity, we assume the following:

) (e e (84 1) (5 — )

1. A binary classification task where the number of classes
equals the number of attributes (i.e. K = A = 2).

2. The attributes are known, and the classes are balanced.
(e |Xy=1| = [Xy=2).

3. The majorlty of samples which hold the spurious corre-
lation in each class are aligned with the class label (i.e.
| Xy,a=y| > | Xy a2y

4. The dataset is highly biased. In other words, % <
1. o

5. In a highly biased dataset, best performance is coupled
with overpresenting the minority (conflicting samples
according to assumption 1.) in early stages of training.
Therefore, an overfitting on the minority is expected be-
fore the overfitting on the majority.

We refer to the expected loss of the majority (aligned) sam-

ples as £ 4, and the expected loss of the minority (conflict-

ing) as L. For GERNE, we sample two batches: biased

and less biased batch, each of size B. From Eq. (5), L.t

can be written as:

Lewt =(1+8) L —B-Ly (16)

Since the biased batch reflects the inherent bias present in

the dataset, under the third assumption, we can approximate

Ly, by L4, neglecting the loss on the very few conflicting

samples in the batch. Therefore, we have:

Ly~ La )

Following the third assumption and the conditional attribute
distribution in Eq. (4), we can approximate the composition
of the less biased batch as follows: a proportion of (1 — £)
of the samples in the less biased batch are drawn from the
aligned samples, while a proportion of $ of the samples
from the minority group. this leads to the following ap-
proximation:

ﬁsz(l—*) EA"‘* Lo (18)
Substituting Eq. (17), Eq. (18) into Eq. (16):

2—c-(1+ﬂ).ﬁA+c-(l+ﬁ)

LEI ~
¢ 2 2

Lo (19)

We consider the following *SW’ approach:

» Sampling step : we sample an ’SW’ batch of size B sim-
ilar to the less biased batch in GERNE. Where (1 — §)
of the batch samples are from the majority group (aligned
samples) and 5 from minority (conflicting samples).



¢ Weighting step: we compute the loss L, over the sam-
pled batch as follows:

Low=w-La+(1—w) -Loyw= (20)

2—c-(1+p)
2
where L 4 is computed over aligned samples in the *SW’
batch and L is computed over the conflicting samples.
Let’s compute the variance of the two losses:

Var(Lew) = w? - Var(Ly ?) + (1 — w)? - Var(£d?)

+2-w- (1—w)-Cou(Ly % L) (21)
where Var (L") means the variance computed over m - B
samples where B is the batch size. For simplicity, we refer
to Var(L) as Var(L)

Following the fourth assumption, when the model overfits
on the conflicting samples (i.e. Lo =~ (), we can approx-
imate both Var(Lc),Cov(La, L) to zero. Therefore:

Var(Law) = w? - Var(ﬁz_cﬂ)

1 Var(La) =

(2—0-2(14—6)) 23

1\3\0

-Var(La) (22)

From Eq. (16):

Var(Lezt) = (1+ B)* - Var(Ly) + 5% Var(Ly)

—2-(14+p)-8-Cov(L, Ls)

B) -/ Var(Ly) — B/ Var(Ly))®

(23)

Note that the the inequality reduces to an equality in
Eq. (23) if CO’U(ﬂlb, Eb) = \/Var(ﬁlb) . \/Var(ﬁb).
The covariance term (C'ov) can be controlled by the num-
ber of shared samples between the biased and less biased
batches. If all the aligned samples in the less biased batch
are included in the sampled biased batch (i.e. the less bi-
ased batch is created by replacing some aligned samples by
conflicting ones), we get maximum value for the C'ov.
From Eq. (18):

Var(Ly) ~ (1 — 5) Var(L ) = (1 - g) Var(L4)
(24)
And from Eq. (17)
Var(Ly) = Var(La) (25)

Finally, substituting Eq. (24) and Eq. (25) in Eq. (23):

Var(Lesr) > (L) (/1= 5 = B)* - Var(La) 26)

According to the fourth assumption, we are interested in
the range where ¢ - (8 + 1) > 1. Using the limits of 3 de-
fined in Eq. (9), we obtain 8 € [1=¢, 2=<].
the representation of aligned samples simulates a vanishing
representation (according to Eq. (8)) in the sampled batches,
which leads to £4 > 0. Assuming a limited and non-
vanishing variance Var(L4) (i.e. the model outputs a non-
constant prediction for samples from the majority group),
we have:

8 — % = Var(Lsw) =~ 0,Var(Ley) # 0 for

€ (0, 1]. This non-vanishing variance of GERNE’s loss, if
controlled with tuning /3 to ensure stability, gives the model
the chance of escape sharp minima similar to gradient ran-
dom perturbation [1] and therefore, improve generalization
[23, 33, 34].

C. Bounding

We aim to simplify the upper and lower bounds of g in
Eq. (9). We start by simplifying the upper bound:

min Inap((i1 i2 )

a’ a
(y,a)€9 vary
ayaF i
. . 11—«
Where: 41 = —— %wa 142 — _17%a = q
ya c(f—0ya) > ya c(f—oya)

under the constraints that Vy € V,>" aye = 1, ayq €
10,1[, A > 2, and ¢ € [0, 1]. There is at least....

Step 1: Comparing i, , and i,
We note that i,,, is a decreasing function in ., and i.,, is
an increasing function in oye. We can show that if oy <
1 2
, then z o« > Zya, and if ayq > 5, then zya lyq- We
conclude by the following:

. .1 .2 ) . .1 .2 .1
min max(i,,,i5,) = g, Min max(i,,,i5,) = tymgr
(y,a)€g very Y7 (ya)eg vary v
aya<i Qya>%
where:
Oyt gt = min Oygq < —, OQyrrgr = MAX OQlygq > —

(v.a)€G A’ (v.a)€g A
Step 2: Finding the Worst-Case (y, a) Pair
Since ), a,, = 1, we have:

Z ay’k = 1 — ay/a/7

k#a’
and hence there exists j # a’ such that:

1 — g

Wiz g7
Because ay/qr < % and A > 2, we get:

1-— Qg 1

A1 A



so:
1

Qi > Z

S N .7 S
Therefore, max (i, ;, /) = i,; = —= E S 1.

is a decreasing function in ¢, € %, 1], we have

l—ay g
Z1 < — A—1 _ 1- Qylal

i2
y'j = oL - “y/a/) T oe(- ay/a,) tya

. .1
Since 7y,

. Therefore:

1
y iy < 42 val and we have iy Therefore, the upper

bound of [ is determined by 4 zy,,a/, For the lower bound, we
can simply choose 5 = —1 as lower bound (§ = —1 sat-
isfies Eq. (9) and simulates ERM training as in Sec. 4.1.3).
Finally, we limit 3 € [~1,4,,,.] later in the experiments in
the known attribute case. For the derived upper bound, we

1 . .
can see that S, = Lyrrgn is inversely proportional to ¢, A.

//a// < Z

D. Algorithm 2.

Algorithm 2 GERNE for the unknown attribute case
Input: X, C X fory € Y, f with initial § = 6,0 = 6
(parameters of the biased model f), # epochs £, batch size

per class label B, # classes K, # attributes A = 2, learning
rate 7).

1: Training f on biased batches with class bal-
anced accuracy CBA = % Zyey Py =
arg max, ¢y fyr(z)) as the evaluation metric
for model selection.

2: Select a threshold ¢ and create the pseudo-groups G by
following the steps in Sec. 4.2.

3: Follow Algorithm 1. with: G + G.

E. Proposition 1.

Creating both biased and less biased batches using the
pseudo-groups G, and with § as hyperparameter, we
can simulate batches with a more controllable condi-
tional attribute distribution. ~ Specifically, for (y,a) €
G, we can achieve scenarios where peyi(aly) >
max, 4 p(ald, y) o pese(aly) < min, 4 plala, y) as op-
posed to Eq. (13).

Proof. We define &5 the same way as in Eq. (2) for the

created pseudo-groups: &g = I‘ 2? Tl For a constant ¢, we
create the less biased batch as in Eq. (4):

. - 1
pw(aly) = aya +c- (5

5~ Qi) Q7

Similar to Eq. (8), the conditional attribute distribution
Dext(@ly) is given by:

1

Pext(aly) = Qg +C- B+1)-(5

5~ Gya)- (28)

We can write pe.t(aly) as follows:

pemt Z pemt ‘y

acA

plala, y). (29)

Placing Eq. (28) in Eq. (29), we get

S Gyarplali, )+ (B+1)-(5

pewt a|y Z_dy&)'p(a’|da y)
acA
(30)
For p(ala = 1,y) # p(ala = 2,y) and &1 # 3, to make
Pext(aly) = p for some p € [0, 1], we can choose:
— e a" \a C~L,
S SN
2acic (3~ aya) (ala,y)
Discussion. When &,; = %, our algorithm is equivalent

to sampling uniformly from &), and equally from classes.
When p(ala = 1,y) = p(ala = 2,y), it implies that
f has distributed the samples with attribute a and class y
equally between the two pseudo-groups. However, in prac-
tice, this is precisely the scenario that f is designed to
avoid. Specifically, if a represents the presence of spu-
rious attributes (i.e., the majority group), it is likely that
p(ala = 1,y) < p(ala = 2,y). Conversely, when a rep-
resents the absence of spurious features (i.e., the minority
group), we would expect p(ala = 1,y) > p(ala = 2,y). In
fact, f is explicitly trained to exhibit a degree of bias, which
inherently disrupts the equality above.

F. Implementation Details

F.1. Implementation details on Datasets-1

For the C-MNIST [3, 27], we deploy a multi-layer percep-
tron (MLP) with three fully connected layers, while for C-
CIFAR-10 [15, 31] and bFFHQ [22, 27], we employ a pre-
trained ResNet-18 model [14] (pretrained on ImageNet1K
[8]) as the backbone. The Stochastic Gradient Descent
(SGD) optimizer, with a momentum of 0.9 and a weight de-
cay of 0.01, is applied across all three datasets. Batch sizes
are configured as follows: 100 per group/pseudo-group for
C-MNIST and C-CIFAR-10, and 32 for bFFHQ. Learning
rates are set to 0.1 for C-MNIST in the known attribute case
and 0.01 in the unknown attribute case. For C-CIFAR-10
and bFFHQ, the learning rate is set to 0.0001.

For GERNE in the known attribute case, we present results
from two experimental configurations. In the first experi-
ment, we set ¢ = 1 and 8 = 0, which corresponds to resam-
pling [16] from groups, i.e., training on L;; without extrapo-
lation. In the second experiment, 3 is tuned for ¢ € {1, 1}.
In the unknown attribute case, ¢ is an additional hyperpa-
rameter to be tuned. We avoid using any data augmenta-
tions as certain transformations can unintentionally fail to
preserve the original label. For example, flips and rotations



in C-MNIST can distort labels (e.g., a rotated 6" appearing
as a”9”) [41]. For training f in case of unknown attributes
in the training set, we employ the same model architecture
as f, with modifications to the hyperparameters: the weight
decay is doubled, and the learning rate is reduced to one-
tenth of the learning rate used to train f. The loss function
used is the cross-entropy loss in all the experiments.

F.2. Implementation details on Datasets-2

To ensure a fair comparison of GERNE with other methods
in [50], we adhere to the same experimental settings. For
the Waterbirds [46] and CelebA [30] datasets, we utilize a
pretrained ResNet-50 model [14] as the backbone, while for
CivilComments [5], we use a pretrained BERT model [9].
Each backbone is followed by an MLP layer with K out-
put neurons. We employ SGD with a momentum of 0.9 and
a weight decay of 0.01 for Waterbirds and CelebA, while
for CivilComments, we use AdamW [24] optimizer with a
weight decay of 0.0001 and a tunable dropout rate. We set
batch sizes to 32 for both Waterbirds and CelebA and 5(16)
per group(pseudo-group) for CivilComments. The learning
rates are configured as follows: 0.0001 for Waterbirds and
CelebA, and 0.00001 for CivilComments. Additionally, we
set the bias reduction factors ¢ to 0.5 for Waterbirds and
CelebA and to 1 for CivilComments. For image datasets,
we resize and center-crop the images to 224x224 pixels.
In the case of unknown attributes in the training set, f has
the same architecture as f, but we adjust the hyperparam-
eters: the weight decay is doubled, and the learning rate is
reduced to one-tenth of the value used to train f. We em-
ploy the Cross-entropy loss as the loss function across all
experiments. For experiments with unknown attributes in
both the training and validation sets, we limit the hyperpa-
rameter ¢ search space to the interval [0, ] .

G. Evaluating GERNE under limited attribute
information

To further demonstrate the effectiveness of GERNE in sce-
narios with limited access to samples with attribute infor-
mation, we conduct two experiments on the CelebA dataset.
In these experiments, we exclude the training set and only
use the validation set with its attribute information for train-
ing. We follow the same settings and implementation details
described earlier. As part of the implementation, we first
tune the hyperparameters using the designated evaluation
metric. Once we determine the optimal hyperparameters,
we fix them and train the model f three times with different
random seeds. Finally, we report the average worst-group
test accuracy and standard deviation across these runs.

Experiment 1 - Evaluation on test set. In this experiment,
f is trained using the full validation set. The worst-group
accuracy on the test set is used as the evaluation metric.
This setup represents the best possible performance achiev-

able when relying solely on the validation set for training.
Experiment 2 - Cross-validation. we divide the validation
set into three non-overlapping folds, ensuring that each fold
preserves the same group distribution as the original vali-
dation set (i.e., we randomly and equally distribute samples
from each group across the folds). We use two folds to train
f and reserve the remaining fold for hyperparameter tuning
and model selection, using the worst-group accuracy on this
fold as the evaluation metric. We repeat this process three
times, with each fold serving as the validation fold exactly
once. We summarize the average worst-group test accuracy
and standard deviation across all nine runs (three folds x
three seeds) in Tab. 3.

We also compare these results with DFR, a method that
trains the last layer of the model on the validation set af-
ter performing ERM training on the training set. GERNE
consistently achieves state-of-the-art results, demonstrating
its robustness and effectiveness even with severely limited
attribute information.

Table 3. Performance Comparison of GERNE and DFR using the
validation set for training.

Method WGA on test set(%)
DFR 86.30 £ 0.30
GERNE - Evaluation on test set 90.97 £+ 0.35
GERNE - Cross-validation 88.63 £+ 0.59

H. GERNE versus the resampling method

In Tab. 1, GERNE achieves higher GBA compared to the
special case of GERNE with ¢ = 1,8 = 0 (resampling
method [16]) for both C-MNIST and C-CIFAR-10 datasets.
Our explanation behind GERNE superior performance is
that resampling method tend to present the majority and mi-
nority groups equally in the batch, and the model f tends to
prioritize learning the easy-to-learn spurious features asso-
ciated with the majority group. For instance, the color in
C-MNIST. While GERNE undermines learning the spuri-
ous correlations by directing the learning process more in
the debiasing direction thanks to the extrapolation factor.

I. Additional benchmarks and baselines

We compare GERNE with two new additional baselines:
DeNetDM (Sreelatha et al., 2024) and BiasEnsemble (Lee
et al., 2023), after adapting GERNE to match their imple-
mentation details (e.g., data augmentation). In ??, we report
results on two synthetic datasets (C-MNIST, C-CIFAR-10)
and two real-world datasets (Dogs&Cats, newly added; and
bFFHQ with an additional bias-conflicting ratio), each un-
der two bias-conflicting ratios. GERNE outperforms Bi-
asEnsemble on both ratios of Dogs&Cats, with a margin
of over 10% at the challenging 1% bias-conflicting sce-
nario. GERNE also outperforms or remains competitive



with both baselines on the remaining datasets. These results
further demonstrate GERNE’s effectiveness as a debiasing
method.
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